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ABSTRACT 
Motivation: Transmembrane β-barrels (TMBB) belong to a special 
structural class of proteins predominately found in the outer membranes of 
Gram-negative bacteria, mitochondria, and chloroplasts.  TMBBs are 
surface-exposed proteins that perform a variety of functions ranging from 
nutrient acquisition to osmotic regulation.  These properties suggest that 
TMBBs have great potential for use in vaccine or drug therapy 
development.  However, membrane proteins, such as TMBBs, are 
notoriously difficult to identify and characterize using traditional 
experimental approaches and current prediction methods are still 
unreliable. 
Results: A prediction method based on the physicochemical properties of 
experimentally characterized TMBB structures was developed to predict 
TMBB-encoding genes from genomic databases.  The Freeman-Wimley 
prediction algorithm developed in this study has an accuracy of 99% and 
MCC of 0.748 when using the most efficient prediction criteria, which is 
better than any previously published algorithm. 
Availability: The MS Windows-compatible application is available for 
download at http://www.tulane.edu/~biochem/WW/apps.html. 
Contact and Supplementary Information: Supplemental data is available 
for download at (insert URL).  Please contact the corresponding author at 
wwimley@tulane.edu.   
 

1 INTRODUCTION  
 The transmembrane β-barrel (TMBB) is one of two major 
structural classes of membrane-spanning proteins; transmembrane helical 
bundles are the other.  TMBBs are found in the outer membranes of Gram-
negative bacteria, mitochondria, and chloroplasts, while TM helical 
bundles are found in the cytoplasmic membranes of all living organisms.  
Although genes that encode TMBBs are estimated to represent at least 3% 
of all protein-coding genes in Gram-negative bacteria, TMBBs represent 
only 1% of the solved protein structures from Gram-negative organisms.  
As a rapidly expanding number of genomic sequences become available, 
using in silico methods to identify previously unknown TMBBs is an 
appealing alternative to more difficult and time-consuming experimental 
methods such as crystallography.  Computational TMBB prediction 
methods can identify candidate genes in order to perform experimental 
validation or structural proteomics on a more focused population.  These 
methods also provide the opportunity to identify and characterize TMBBs 
that may not be expressed under standard culturing conditions and thus, 
would go unobserved using traditional screening methods such as 
proteomic analysis. 
 Computational prediction methods have been used to predict 
transmembrane helices with an accuracy of 99% for nearly a decade.  
Transmembrane helices are simple stretches of 19-25 hydrophobic residues 
which can be predicted with near-perfect accuracy using experimentally 
determined hydrophobicity scales; an example of such a program is MPEX 
(Jayasinghe, et al., 2001; Snider, et al., 2009).  However, the prediction of 

TMBBs presents a more difficult challenge due to the cryptic nature of the 
TMBB structure (Wimley, 2002).  The TMBB structure is a series of anti-
parallel β-strands that are arranged in a cylindrical geometry forming a 
structure that resembles a barrel (Schulz, 2000).  The transmembrane β-
strands of TMBBs consist of approximately 10 amino acids arranged in an 
alternating, dyad-repeat pattern of hydrophobic and hydrophilic residues 
where the hydrophobic side-chains face the lipid environment and the 
hydrophilic side-chains face the interior of the β-barrel.  The β-hairpin, 
which is the major structural unit of the TMBB, is a pair of anti-parallel 
TM β-strands connected by a short loop of 3-7 residues (i.e., hairpin turn).  
The β-hairpins are connected to each other by loops of varying length.  The 
complexities and irregularities in the structure including the variations in 
loop length and composition, deviations from the pattern of hydrophobicity 
in some β-strands, and the low information content (i.e., only five 
hydrophobic residues in a TM strand) make the identification of TMBBs 
especially problematic (Wimley, 2003). 
 There are a wide variety of TMBB prediction algorithms that 
utilize machine-learning methods ranging from Bayesian networks to k-
nearest neighbor methods.  Machine-learning methods are designed to 
identify the common features of the TMBBs in a training dataset as well as 
features which distinguish TMBBs from other types of proteins.  The 
distinguishing variables, as interpreted by the algorithm, are used as rules 
to classify a test sequence (Gromiha and Suwa, 2006).  Although these 
methods can yield reasonable TMBB prediction accuracies (64-97%), their 
predictions are still less reliable than those made for TM helical bundles 
(Gromiha and Suwa, 2006; Hu and Yan, 2008).  Besides achieving less 
than ideal prediction accuracy, a major disadvantage to using a machine 
learning method is that it cannot be used for hypothesis testing because the 
variables used to make the predictions are either hidden or arbitrary, thus 
there is no discernable link between the variables and the physicochemical 
properties of the experimentally solved TMBB structures. 
 A TMBB prediction algorithm based on the physicochemical 
properties of TMBBs was developed in this lab (Wimley, 2002).  This 
algorithm is based on an analysis of the structure and composition of 
known TMBBs.  The algorithm identifies the positions of TM β-strands 
using a simple pattern-recognition scheme, which utilizes the statistical 
amino acid abundance data derived from known structures.  The observed 
amino acid abundances from the TM β-strands are compared to the 
expected genomic abundance and the difference between the two 
abundances yields information about patterns and composition unique to 
the TM segments of TMBBs.  The algorithm uses the resulting abundance 
values to identify 10-residue long β-strands with dyad repeat patterns.  
Next, adjacent β-strands are scored for β-hairpin-forming potential, and the 
β-hairpin score data is used in a function to give a protein sequence a single 
β-barrel score.  The β-barrel score is a rating of the overall propensity of 
the sequence to fold into a TMBB. 
 The initial goal of this work was to rigorously evaluate the 
performance of this algorithm since it was intended to make predictions for 
genomic sequences, which will be listed in an annotated database.  The 
performance of the original algorithm was evaluated using a non-redundant 
protein database (NRPDB) with 14,,238 proteins of known structure from 
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the Protein Data Bank (PDB) (Berman, et al., 2000).  Each sequence was 
given a β-barrel score, which was used as a threshold-dependent binomial 
classifier to identify each sequence as either a TMBB or non-TMBB.  
Using the NRPDB as a stringent test set, the performances of the original 
prediction algorithm, as well as other prediction algorithms, were 
unsatisfactory because they had very large rates of false-positive 
predictions.   
 The algorithm described in this work was developed to address 
the specific weaknesses in the ability of the original algorithm to 
discriminate against non-TMBBs.  The modified algorithm, which we call 
the Freeman-Wimley algorithm, showed a substantial improvement, from 
87% to 99% when analyzing the NRPDB.  The accuracy of the Freeman-
Wimley algorithm is comparable to the accuracy of TM helix prediction 
and exceeds the accuracy of other TMBB prediction methods.  
Furthermore, an analysis of the E. coli genome has revealed that the 
Freeman-Wimley algorithm is more efficient at distinguishing TMBBs 
from non-TMBBs in genomic databases compared to the NRPDB.  This 
work represents significant progress in the computational identification of 
genomic TMBB sequences. 

2 METHODS 

2.1 Database construction 
 A non-redundant protein database (NRPDB) was constructed 
from the seqres text file available on the ftp site of the PDB 
(ftp://snapshots.rcsb.org/20080107/pub/pdb/derived_data/).  The 
corresponding 50% clustering file 
(ftp://snapshots.rcsb.org/20080107/pub/pdb/derived_data/NR/) was used to 
select a set of protein sequences that were 50% or less identical to all other 
proteins.  The database was further refined by the exclusion of proteins 
outside of the chain length constraints of the prediction algorithm, i.e. 
between 60 and 4000 residues long, limiting the total number of members 
in the database to 14,238. 

2.2 TMBB structural analysis and amino acid 
abundance values 

 A total of 22 non-redundant (≤ 40 % identical) TMBBs were 
analyzed for structural bioinformatic data (listed in Table S1) as was 
previously done by Wimley (Wimley, 2002).  Briefly, transformation of 
PDB coordinates to a bilayer plane was performed essentially as done by 
Wimley except the software used was the Accelerys DS Viewer available 
as a free download.  The hydrophobicity profile used to center the 
transmembrane section of each TMBB was performed by calculating the 
average hydrophobicity of the external residues using the Wimley-White 
hydrophobicity scale (White and Wimley, 1998).  The average 
hydrophobicity within a 5 Å sliding window was calculated along the Y-
axis using the structural Y-coordinates of the β-carbons (except for glycine 
where the α-carbon was used).  The midpoint of the hydrophobic surface 
was used to transform the XYZ coordinates of a structure to a bilayer plane 
centered at 0 Å; the distance of the residues from that center was used to 
determine if they were located in the core region (0 - 6.5 Å) or in the 
interfacial region (>6.5 - 13.5 Å).  The resulting raw abundance values 
were normalized by comparison to the expected genome-wide abundance 
values (Table S2).  The abundances determined in this analysis were 
averaged with those generated by Wimley, weighting each group by the 
respective number of amino acids which contributed to the value 
calculation. 

2.3 TMBB prediction algorithm 
 The TMBB prediction algorithm used was based on the method 

previously published by this lab (Wimley, 2002) with some modifications.  
Sequences shorter than 60 and longer than 4000 residues were excluded; 
these limits were set because sequences with fewer than 60 residues most 
likely cannot fold into TMBBs, which must have at least 8 β-strands, and 
sequences longer than 4000 residues are uncommon and unlikely to be 
TMBBs (all of the known TMBBs are shorter than 1000 residues).  

Sequences were assigned abundance values in an alternating (dyad-repeat) 
pattern of internal/external and external/internal using the core and 
interfacial values for the respective surfaces resulting in two separate 
abundance assignments (see Figure 2 and Figure S1).  The β-strand scores 
were calculated with a 10-residue-long sliding window that steps through 
the sequence one position at a time.  Within the sliding window, the three 
anterior and posterior residues were assigned interfacial abundances while 
the four middle positions were assigned core abundances.  This differs from 
the original algorithm which used an average of the core and interfacial 
values known as the whole or average bilayer value.  The values within the 
two windows were summed and the greater sum was taken as the β-strand 
score of the median residue in the window, i.e. the 5.5th residue in the 
window.  Next, the β-strand score was analyzed for β-hairpins using two 
10-residue sliding windows separated by 5 fixed residues, which represents 
the hairpin turn.  The maximum β-strand score was identified in each 10-
residue window, stepping through the data one value at a time.  The β-
hairpin score for the median residue in the window is the sum of the 
maxima in each 10-residue window.  The β-barrel score is calculated as the 
sum of all β-hairpin score points whose value is greater than six divided by 
the natural log of the length of the sequence.   The original algorithm used 
just the length of the sequence as the divisor; however, the natural log of 
the length is more appropriate as discussed in the results and discussion. 

2.4 Definitions and equations for algorithm 
performance 

1 True positive prediction (TP) – a TMBB whose β-barrel score is at 
least equal to the test threshold 

2 True negative prediction (TN) – a non-TMBB whose β-barrel score 
is less than the test threshold 

3 False positive prediction (FP) – a non-TMBB whose β-barrel score 
is at least equal to the test threshold 

4 False negative prediction (FN) – a TMBB whose β-barrel score is 
less than the test threshold 

5 Sensitivity – proportion of TMBBs positively identified by test out of 
known TMBBs in the data set 

 
 
 
 

6 Specificity – proportion of non-TMBBs eliminated by test out of 
know non-TMBBs in the data set 

 
 
 
 

7 Positive predictive value (PPV) – A number from 0 to 1 that 
indicates the likelihood that a positive prediction is correct, 1 being 
most likely 

 
 
 
 

8 Accuracy – all correct positive and negative predictions out of the 
whole data set 

 
 
 
 

9 Matthews correlation coefficient (MCC) – a metric of overall 
efficiency of a prediction algorithm ranging from 0 – 1 (Matthews, 
1975).  An MCC of 0 means the predictions are completely random 
and 1 means the predictions are perfect. 
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FIGURE 1 Analysis of TMBB structures.  (A) The three-dimensional coordinates of 
the structures were transformed to a bilayer plane as described in methods.  The 
aromatic residues, shown in space-filling modeling, were used among other cues to 
identify the transmembrane domain.  (B) The internal- and external-facing residues 
were identified in each transmembrane strand along with the respective distance from 
the bilayer mid-plane.  (C) The abundance values of all 20 natural amino acids were 
calculated in 4 structural subdomains. 
2.5 Randomized sequence analysis 

 It was observed that many of the false-positive predictions (i.e., 
non-TMBBs with high β-barrel scores) had a considerable abundance of 
amino acids which are typically more abundant in TMBBs, such as Tyr, 
which could lead to an artificially high β-barrel score.  In an extreme 
example, a 100 residue-long sequence consisting only of Tyr residues 
receives a β-barrel score near 300, which is exceptionally high and would 
always be predicted to be a β-barrel.  This observation led to the hypothesis 
that a gene whose composition is rich in high-scoring amino acids would 
receive a similarly high β-barrel score using either the native sequence or a 
randomized one.  Therefore, a method was developed to test this hypothesis 
for TMBBs and non-TMBBs.  Each protein sequence was randomly 
scrambled 1000 times and each scrambled version was analyzed using the 
Freeman-Wimley algorithm.  All of the scores were averaged to obtain the 
Mean Randomized Score (MRS).  The MRS and standard deviation (σ) 
were compared to the β-barrel score of the native sequence for statistical 
significance.  A probability of 5% or less was considered to be significant 
thus, the β-barrel score for a protein must be at least 1.96 * σ greater than 
the MRS in order to pass the test. 

2.6 Programming 
 All of the prediction and analysis programs used to perform this 

work were written in Delphi, which is an object-oriented version of the 
Pascal programming language.  The programs were written and compiled 
using the freely available Turbo Delphi 2006 from Borland/Codegear and 
are provided at http://www.tulane.edu/~biochem/WW/apps.html. 

3 RESULTS 

3.1 Non-redundant protein database construction and 
testing 

 A non-redundant protein database (NRPDB) with a 50% 
similarity cutoff was constructed to test the prediction accuracy of 
the transmembrane β-barrel (TMBB) prediction algorithm 
developed in this lab (Wimley, 2002).  The prediction accuracy  

 
FIGURE 2 Sequence analysis by the Freeman-Wimley algorithm.  The schematic 
shows the typical amino acid side-chain orientations in a transmembrane β-hairpin, 
where half of the membrane-spanning side-chains are lipid-exposed (external) and the 
other half face the pore (internal).  The sequence analysis is performed as follows: I) 
The amino acid abundances are assigned to each residue within a 10-residue sliding 
window, with the terminal residues assigned as bilayer interfacial residues, and the 
remainder as bilayer core residues.  II) The sum within the window is taken as the β-
strand score for the median residue, thus peaks indicate the middle of predicted β-
strands.  III) A 25-residue sliding window analysis of the β-strand score is used to 
identify β-hairpins, where two β-strand peaks are separated by a five-residue gap 
(representing the hairpin turn).  IV) The topology prediction shown in the β-hairpin 
score is simplified to a single value called the β-barrel score as described in methods 
and Figure S1. 
 
was tested because this algorithm was developed to predict 
TMBBs in the genomes of Gram-negative bacteria and it was 
imperative to validate the accuracy of such predictions.  Protein 
sequences were obtained from the Protein Data Bank (PDB) 
website, www.pdb.org, thus each structure was known for each 
sequence.  The number of sequences in the database totaled 
14,238, where there were 48 true TMBBs and 14,190 non-TMBBs 
covering the full range of protein fold classes, including all β, all α, 
α/β, and α+β supersecondary structures.  This dataset is a stringent 
test case for estimating how well the TMBB prediction algorithm 
would perform against a genomic database whose sequences fold 
into a wide variety of supersecondary structures. 
 To test the performance of the original TMBB prediction 
algorithm, each sequence in the NRPDB was given a β-barrel 
score.  The β-barrel score was used to rank predictions (i.e., greater 
β-barrel scores indicate stronger positive predictions) where 
positive predictions were determined by a prediction threshold of 
0.41, which selected 46 of 48 known TMBBs.  The two highest-
scoring TMBBs were OmpX (1orm; β-barrel score = 4.98) and 
OmpA (1bxw; β-barrel score = 4.49) (Pautsch and Schulz, 1998; 
Fernandez, et al., 2001).  The selected threshold also positively 
predicted 1824 non-TMBB sequences (false positives).  A closer 
inspection of the false positive predictions revealed that the two 
highest scoring proteins were endo-β-1,4-glucanase (1h8v; β-barrel  
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FIGURE 3 Structural differences between large and small TMBBs.  Here is an 
example of the additional structural features often found in the larger known TMBBs 
which are absent in their smaller counterparts.  The protein subdomains which are not 
in contact with the bilayer tend to receive lower β-hairpin scores, thus lowering the 
overall β-barrel score when calculated by the original scoring method.  The surfaces 
which contact the bilayer are shown in blue; the protein-protein interaction domains 
are shown in red; the “plug” domain, which occludes the lumen of the pore is shown 
in green.  (A) Structure of Protease VII/OmpT (1i78; Vandeputte-Rutten, et al., 2001).  
(B) Structure of pilin usher protein PapC (2vqi; Remaut, et al., 2008). 
 
score = 5.13) and xylanase D (1bcx; β-barrel score = 5.08) 
(Wakarchuk, et al., 1994; Sandgren, et al., 2001).  Although the 
original TMBB prediction algorithm accurately identified known 
TMBBs, the rate of false-positive predictions was unacceptably 
high. 

3.2 Algorithm modifications 
 The major reasons for the high rate of false-positive 
predictions were investigated in order to make the algorithm more 
accurate, thus improving the efficacy of the algorithm as a tool for 
identifying genomic TMBBs.  There were three major 
modifications to the algorithm that were prompted by the initial 
screening of the NRPDB.  1) The amino acid abundance values 
were updated to include the latest structural information 2) the β-
strand prediction algorithm was modified to increase specificity for 
the recognition of transmembrane β-strands and 3) an adjustment 
was made to the β-barrel score calculation to eliminate an intrinsic 
bias for shorter sequences. 
 
Table 1. Algorithm improvements 
Algorithm a TP b FP c TN d FN e 
Original 46 1823 12367 2 

Updated  abundance values 46 895 13295 2 

Core/interfacial-specific 
(CISA) β-strand prediction 46 1772 12418 2 

Modified β-Barrel Score 46 625 13565 2 

All modifications combined 
(Freeman-Wimley algorithm) 46 599 13591 2 

Freeman-Wimley algorithm 
with MRS Screen 37 161 14029 11 
a Describes which version of the algorithm was used to make predictions in the 
NRPDB (Non-redundant PDB) 
b True Positive predictions (correctly identified TMBBs) 
c False Positive predictions (incorrectly identified non-TMBBs) 
d True Negative predictions (correctly excluded non-TMBBs) 
e False Negative predictions (incorrectly excluded TMBBs) 

 
FIGURE 4 Comparison of prediction 
efficiency.  The original algorithm (triangles) 
was compared to the Freeman-Wimley 
algorithm (circles) using three measures of 
performance: sensitivity, PPV, and MCC. 
 
 
Updated abundance values 
 The abundance values 
used to identify β-strands, which 
subsequently lead to the β-barrel 
scores used to rank TMBB 
predictions, were updated with the 
most recent structural information.  
The original abundance values 
used in the prediction algorithm 
were derived from the analysis of 
only 15 unique TMBB structures 
(Wimley, 2002).  Over 20 new, 
unique structures have been solved 
since then, thus the amount of data 
from which amino acid 
abundances could be derived was 
increased more than twofold.  Only 

TMBB structures with sequences that were less than 40% identical 
to any other sequences in the PDB were analyzed (see Table S1) 
using the structural analysis method of Wimley (see Figure 1).  
This analysis produced four raw abundance values for each natural 
amino acid, with the exception of cysteine, which was absent from 
all transmembrane regions.  The observed raw abundances were 
converted to relative abundances, which is a comparison of 
observed and expected abundances, and then were combined with 
Wimley’s relative abundance values as weighted averages (see 
Table S2).  The updated relative abundances were derived from a 
total of 4667 amino acids from 37 protein structures. 
 
β-strand prediction modification 
 The TMBB prediction algorithm was modified to utilize 
all of the available abundance information more comprehensively.  
The whole bilayer abundances, which are averages of the 
interfacial and hydrophobic core abundances for each residue, were 
used in the original prediction algorithm.  However, some residues 
are distinctly more abundant in one subdomain than the other on a 
given surface.  For example, leucine is nearly twice as abundant in 
the hydrophobic core as it is in the interface of the external surface; 
tyrosine is nearly twice as abundant in the interface as it is in the 
core of the external surface; and tryptophan is nearly five times 
more abundant in the interface than in the hydrophobic core of the 
external surface.  Instead of assigning the average bilayer 
abundance to each residue in the window as was done previously, 
the interfacial abundances (internal or external) are assigned to the 
first and last three residues in the window, and core abundances 
(internal or external) are assigned to the four middle residues in the 
window.The new abundance value assignment method was termed 
the core-interfacial specific abundance assignment (CISA). 
 
Modification of the β-barrel score calculation 
 The β-barrel score calculation was modified to address 
an intrinsic bias for short sequences found in the NRPDB.  The 
structures of TMBBs were inspected to gain insight as to why 
shorter sequences had a tendency to receive greater β-barrel scores 
than longer sequences (Figure 3).  The available structures showed  
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FIGURE 5 Randomized 
sequence scoring analysis.  
Here are example β-barrel 
score distributions for 
sequences which had been 
randomized and scored by the 
Freeman-Wimley algorithm.  
Two positively predicted 
sequences from the analysis of 
the NRPDB (one true positive 
and one false positive) are 
shown.  The β-barrel score for 
the native sequence is shown 
as a circled X.  The β-barrel 
score of the native sequence 
was compared to the mean 
score of the randomized 
sequences.  (A) Analysis of 
nucleoside transporter, Tsx 
(1tlw; Ye and van den Berg, 
2004), a TMBB.  (B) Analysis 
of xylanse (1bcx; Wakarchuk, 
et al., 1994), a soluble protein. 
 
 

that larger TMBBs often have substantial percentages of the 
protein structure dedicated to non-TMBB domains or subdomains, 
unlike the smaller TMBBs such as OmpX and OmpT (Vogt and 
Schulz, 1999; Vandeputte-Rutten, et al., 2001).  Many of the larger 
TMBBs, such as the dimeric PapC and BtuB, have a large N-
terminal plug domain that occludes the lumen of the pore, and/or 
extensive protein-protein interaction domains that account for 
nearly a quarter of the sequence (Chimento, et al., 2003; Remaut, 
et al., 2008).  The non-transmembrane domains effectively dilute 
the β-hairpin density, which is reflected in the β-barrel score.  It 
was observed that smaller proteins with only modest β-hairpin 
scores received exceedingly high β-barrel scores, leading to false-
positive predictions.  It is apparent that β-hairpin density is 
relatively reduced in longer sequences, thus various modulations of 
the length were tested, such as truncating sequences longer than 
500 residues and mathematically modifying the length (e.g., 
calculating the square root, cubed root, natural log, etc.).  Taking 
the natural logarithm of the length outperformed all of the other 
models (data not shown) and was, therefore, used in the improved 
algorithm. 
 
Evaluation of algorithm modifications 
 The sequences of the NRPDB were analyzed with each 
of the aforementioned algorithm modifications and given a new β-
barrel score, which effectively distinguishes TMBBs from non-
TMBBs (Figure S2).   

 
FIGURE 6 Mean randomized score.  Sequences which were positively identified (β-
barrel score > 45) were randomized to generate the MRS.  The MRS ± 1.96 σ is 
shown as solid triangles and the β-barrel score of the native sequence is shown as 
open circles.  (A) True TMBBs; N = 46.  (B) Non-TMBBs; N = 599. 

FIGURE 7 MRS improves prediction 
efficiency of Freeman-Wimley algorithm.  
Screening the NRPDB using the MRS test 
(open circles) reduced the number of false 
positives while still selecting similar 
numbers of true positives compared to the 
Freeman-Wimley algorithm alone (closed 
circles).  The most efficient prediction 
threshold, 135, is indicated by the dashed 
line. 
 
 
A set of testing parameters were 
established in order to compare 
the effects of the various 
algorithm modifications on 
TMBB prediction performance 
(see Table 1).  The prediction 
threshold, which is the minimum 
β-barrel score to be considered a 
positive prediction, was chosen 
for each modification so that 46 
of 48 true TMBBs were 
considered positive predictions.  
The updated abundances resulted 
in a twofold reduction in the 
number of false positive 
predictions.  The CISA β-strand 

prediction made a modest 3% decrease in the number of false 
positives.  The modified β-barrel score calculation yielded the most 
substantial improvement with a nearly threefold reduction in the 
number of false positives.  When all of these modifications were 
combined into a single algorithm (the Freeman-Wimley algorithm) 
the reduction in false positives was more than threefold.  This vast 
improvement is attributable to improved statistics for abundance 
values, which allowed the CISA assignment to have a greater 
impact, and the alternate β-barrel score calculation.  A more in-
depth comparison between the original algorithm and the Freeman-
Wimley algorithm is shown in Figure 4.  The sensitivity, positive 
predictive value (PPV), and Matthews Correlation Coefficient 
(MCC) are compared between both algorithms over a range of 
prediction thresholds.  The rate of decrease in sensitivity is similar 
in both algorithms as the prediction threshold is increased.  
However, the PPV and MCC changes reveal that the Freeman-
Wimley algorithm is superior at eliminating false-positives, a 
capability which improves greatly as the threshold becomes higher. 

3.3 Randomized Sequence Analysis 
 The structures of some of the higher-scoring false 
positives were examined to better understand why their β-barrel 
scores were similar to known TMBBs.  A review of the false-
positive structures revealed that they were β-sheet-rich with a 
varied number of anti-parallel β-strands similar in length to known 
TMBBs.  Besides the observed structural similarities, some non-
TMBBs have amino acid compositions which are rich in favorable 
amino acids such as Tyr, thus the β-barrel score for such a 
sequence could be inflated because of composition.  To test 
whether sequence or composition played a more prominent role in 
determining the β-barrel score, a randomized sequence analysis 
was performed on each sequence in the NRPDB as described in 
Methods.  Example distributions of β-barrel scores from the 
random sequence analysis are shown for one TMBB (Tsx) and one 
soluble non-TMBB (xylanase) in Figure 5.  The β-barrel score of 
the native sequence is shown on each distribution for comparison  
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FIGURE 8 ROC (receiver operating characteristic) curve comparing published 
prediction algorithms.  The ROC values of several previously published prediction 
algorithms were plotted for comparison to the Freeman-Wimley analysis of the 
NRPDB.  Three of the algorithms were used in a direct comparison to the F-W 
algorithm (Table 2) and are labeled a) k-NN (Hu and Yan, 2008), b) RBF (Ou, et 
al., 2008), and c) βOMP (Berven, et al. 2004).  Names, data, and references of all 
algorithms are listed in Table S3. 
 
Table 2. Multi-algorithm comparison of NRPDB prediction results* 

Evaluation k-NNa / F-W** TMBD-RBFb / F-W** BOMPc / F-W** 

Sensitivity 85.4 / 85.4 95.8 / 95.8 81.2 / 81.2 
Specificity 97.4 / 99.1 93.6 / 95.8 98.4 / 99.1 
Accuracy 97.4 / 99.0 93.7 / 95.8 98.4 / 99.1 

MCC 0.289 / 0.450 0.208 / 0.257 0.342 / 0.441 
*Results are based on analysis of NRPDB which included 48 true TMBBs and 14,190 
non-TMBBs 
**Prediction parameters of Freeman-Wimley algorithm were set to match sensitivity 
of the results of each respective algorithm. 
aHu and Yan, 2008 
bOu, et al., 2008 
cBerven, et al., 2004 
 
to the Mean Randomized Score (MRS).  The two-tailed probability 
(p) that a randomized sequence of the same composition would 
score as high as the native sequence is also shown.  Although the 
β-barrel scores of the native sequences are similar among the two 
examples, the difference between the β-barrel score of the native 
sequence and the MRS is significant for the TMBB but not for the 
non-TMBB.  This suggests that the sequences which correspond to 
TMBB structure are rare arrangements of a particular composition. 
 Figure 6 shows the randomized sequence analysis results 
for true and false positive predictions from the NRPDB where 
positives were predicted using a prediction threshold β-barrel score 
of 46.  The plots for known TMBBs and false positives show the β-
barrel scores of native sequences compared to the MRS ± 1.96σ for 
all of the sequences tested.  The β-barrel scores of the predicted 
true positives (N = 46) are all greater than their MRS where 80% 
of which are significantly greater than their MRS (p ≤ 0.05); this 
represents 77% of all known TMBBs in the NRPDB.  However, 
the β-barrel scores of the false positives from the NRPDB (N = 
599) were less different from their MRS where only 27% were 
significantly greater than their MRS (p ≤ 0.05).  This result 
suggests that the β-barrel scores of most TMBBs are more strongly 
influenced by their sequences than their compositions and the 
opposite is true for the majority of false-positives. 
 The sequences in the NRPDB belong to a wide range of 
structural classes.  The number of positive predictions made by the 
Freeman-Wimley algorithm is compared to the additional 
screening using the MRS test and categorized by structural class in 

Table S4.  These results show that the most common type of false 
positive belongs to the all β-sheet class.  The MRS test broadly 
reduced the total number of false positives by 73% and most 
effectively improved discrimination against all α-helix, coiled-coil, 
and α/β folds. 
 The prediction efficiency was compared between the 
Freeman-Wimley algorithm with and without the MRS test in 
Figure 7.  At comparable sensitivity levels, the MRS test decreased 
the rate of false-positive predictions by as much as 50% and the 
overall efficiency increased by as much 25%.  This shows that the 
MRS test is a powerful tool which enhances the discriminatory 
power of the Freeman-Wimley algorithm. 

3.4 Comparison to other prediction methods 
 Several examples of other prediction methods were 
collected from the literature to compare their performances to the 
performance of the Freeman-Wimley method (Liu, et al., 2003; 
Gromiha and Suwa, 2006; Hu and Yan, 2008).  The various 
selected methods included a variety of machine-learning methods. 
The Freeman-Wimley algorithm was plotted in a ROC (receiver 
operating characteristic) curve and the ROC values of each method 
were plotted in Figure 8 (also see Table S3 for more detailed data).  
These data show that the algorithm developed in this work clearly 
outperformed almost all other previously published methods. 
 A more statistically stringent comparison test was 
performed with algorithms that were publicly available and able to 
analyze the NRPDB.  The prediction results from each algorithm 
are listed in Table 2.  In each case, the Freeman-Wimley algorithm  
made nearly half as many false-positive predictions as the other 
algorithms.  The conclusion drawn from this data is that the 
Freeman-Wimley algorithm is the most accurate predictor of 
TMBBs currently available. 

3.5 Genomic analysis 
 As previously mentioned, the purpose of improving the 
original TMBB prediction algorithm was to create a tool that could 
effectively identify TMBBs in genomic databases.  The genome of 
E. coli, which is the most comprehensively annotated genome  

 
FIGURE 9 Comparison of prediction 
efficiency in NRPDB and E. coli genome.  
The NRPDB contained 48 true TMBBs 
and 14,190 non-TMBBs.  The E. coli 
genome has 36 known confirmed TMBBs 
and 2385 non-TMBBs; the remaining 2718 
are unknown (114 were eliminated for 
being either too short or too long).  This 
analysis only compared the prediction 
efficiency results for those E. coli genes 
which were readily classifiable to the 
results of the NRPDB analysis.  The PPV 
and MCC show that the Freeman-Wimley 
algorithm is much more efficient at 
distinguishing TMBB sequences from non-
TMBB sequences in a genomic database 
than in the NRPDB. 
 
 
available, was analyzed and the 
results were compared to the 
analysis of the NRPDB in Figure 
9. 
 The results for those E. 
coli genes which were readily 
identifiable as being either 
TMBBs or non-TMBBs were 
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included in this analysis.  There were 36 TMBBs and 2385 non-
TMBBs; the remaining 2718 hypothetical and putative proteins 
were ignored as well as 114 that were not analyzed because they 
were either shorter than 60 or longer than 4000 residues.  The 
analysis results show that the algorithm is much more efficient at 
analyzing the known genes of E. coli than the NRPDB, which has 
sequences from a more phylogenetically diverse population.  
Furthermore, the results show that the NRPDB is a very stringent 
test case and suggests that genomic prediction results will be 
better. 

4 DISCUSSION 

4.1 Non-redundant protein database 
 A non-redundant protein database (NRPDB) was 
constructed to measure the prediction accuracy of the Freeman-
Wimley algorithm.  Since the structural identity of each sequence 
was known, correct and incorrect predictions were identified with  
greater certainty than the annotations made in other databases, such 
as SwissProt, which rely on presumed structural classifications for 
some of their entries.  The conclusions drawn from analyzing the 
NRPDB are more reliable than using SCOP or Psort database 
annotations, which are more reliant on homology, because the 
structures of NRPDB sequences have all been manually verified 
rather than verified by computer algorithms (Murzin, et al., 1995; 
Rey, et al., 2005).  Moreover, the non-TMBB proteins come from 
every kingdom of life, offering a diverse sampling of structures 
that may not be found in the genomes of Gram-negative bacteria.  
An advantage of such diversity is that it makes the NRPDB a very 
stringent test case for assessing the predictive power of an 
algorithm. 
 A total of 37 TMBBs were used for calculation of the 
abundance values.  The 50% NRPDB test set included 35 members 
of the abundance value set and 13 unique TMBB sequences that 
were not in the abundance set (48 total). Between/among the 
positive training and testing sets there was no homology (median 
BLAST similarity < 30%, median BLAST E-value = 1) except 
self-self identity.  To determine by another means if the presence 
of homologs was affecting the results presented above, a 20% 
NRPDB was constructed and tested as shown in Figure S2.  The 
results showed there was no difference in the prediction efficiency, 
thus the results reported from analyzing the 50% NRPDB were not 
influenced by the presence of homologous sequences. 
 All relevant sequence datasets are available as FASTA 
files in rich text format (rtf) at 
http://www.tulane.edu/~biochem/WW/apps.html.  Four sequence 
files are given each for the 50% NRPDB and for the 20% NRPDB. 
The four files are: 1) The whole NRPDB; 2) The NRPDB without 
the known TMBBs; 3) All of the TMBBs in the test set that were 
not part of the training (abundance calculation) set; and 4) The 
TMBBs in each NRPDB that were part of the training set.  A 
separate file containing the entire abundance calculation set is also 
available. 

4.2 Cross-validation 
 Although the NRPDB includes sequences that were used 
to generate abundance values, bias is not a concern because this 
statistical approach is not readily subject to overfitting.  The 
absence of bias was verified in the following ways: 
   First, the abundance values were not determined in the 
hidden layer of a machine-learning method where the parameters 
may be subject to inadvertent overfitting to the training set, and 

where cross-validation is essential to prove the robustness of the 
fit.  Instead, abundance values were simply measured from 
structural data and compiled in overall average values.  Traditional 
cross-validation is unnecessary as long as individual members, 
families, or groups in the data set do not have compositional data 
that are statistically different from the overall average.  We 
compared the amino acid abundances from the new set of proteins 
(which contains several novel families) to the expected counts, 
which were based on previously published results using pairwise 
comparisons.  It was found that the two sets of abundance values 
were not statistically different, indicating that the various families 
in the two datasets have the same inherent abundance values.   
 Second, we analyzed the entire NRPDB, which contains 
48 TMBBs, with composition data generated from only the 
previously published abundance values (only 15 proteins), and 
only the new abundance values (only 22 different proteins).  ROC 
(Receiver Operating Characteristic) curves were generated for each 
analysis. The area under the curve (AUC) for each ROC was 0.975 
for each of the two independent sets of abundance values. This 
result further illustrates that all abundance values appear to have 
been sampled from a single parent population without bias.   
 Third, 13 of the 48 OMPs in the non-redundant test 
database were not part of the training/abundance set in any way. 
The prediction accuracy when the training set contains only the 
non-training set TMBBs is nearly the same as when all 48 of the 
TMBB proteins are in the training set (see Table S5). Using a beta-
barrel score threshold of 90 the algorithm predicts 32/37 members 
of the training set, and predicts 9/13 of the unique positives in the 
test set.  This performance is especially good because many of the 
13 remaining sequences are non-canonical examples of TMBBs as 
discussed  below in section 4.5. This provides an additional cross-
validation.   
 Fourth, we compared abundance values from a subset of 
individual proteins in the training set to the overall abundance and 
found no significant statistical differences suggesting, again, that 
the abundance values are derived from a single parent population 
which we sample by our statistical methods.  In this statistical 
method, bias can only arise if the composition of a family of 
proteins in the training set is different enough from the average to 
influence the results.  This is not the case.   
 Fifth, it should be noted that we did not use the 14,238 
protein non-redundant PDB (NRPDB) data set as a training set.  
Instead we used only 37 known β-barrel membrane proteins.  The 
NRPDB contains 35 of those 37 proteins as well as 13 additional 
OMPs not included in the abundance data set.  All together, the test 
database includes 14,203 proteins (out of 14,238 in the database, 
i.e. 99.75%) that were not used in any way to calculate statistical 
data used by the algorithm.  Thus, the fractional overlap between 
the training set and the test database is only 0.0025.  The NRPDB 
is, therefore, already an almost entirely independent test set for 
assessing and comparing the performance of the algorithm. 
 

4.3 A novel way to use the TMBB prediction 
algorithm 

 The MRS test was shown to be a powerful new way to 
reject false positives that received high scores because their 
compositions may have included unusually high numbers of 
favorable residues such as tyrosine.  However, a major technical 
impediment to using the MRS test is that it increases the 
processing time for a dataset by three orders of magnitude, which 
can be cumbersome for very large genomic data sets.  Thus, 
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performing the MRS test is less practical on such large datasets.  
Nevertheless, the MRS test adds great strength to the 
discriminatory power of the β-barrel score while having a minimal 
impact on the sensitivity.  This test also further supports the well-
known hypothesis that a structure is encoded by the specific 
sequence, and depends less on the composition (Anfinsen and 
Scheraga, 1975). 

4.4 High-scoring false positives 
 In spite of making the best efforts to eliminate all false-
positive predictions, certain proteins always received β-barrel 
scores comparable to the highest-scoring TMBBs.  A number of 
non-TMBB sequences are still predicted to be positive after the 
various improvements made to the algorithm.  The supersecondary 
structures of most of these proteins were mostly β, α/β, or α+β.  
The structures reveal the presence of amphipathic β-sheets with 
similar compositions to TMBB β-sheets, which explains the 
prediction results.  It appears that the various amphipathic helices, 
turns, and side-chain interactions between β-strands are structural 
factors that allow the same type of β-sheets found in TMBBs to 
exist in a soluble form.  Most of the false positives designated the 
all α classification belong to the six-[α-]hairpin glycosidase 
superfamily such as 1f9d (Parsiegla, et al., 2000).  Interestingly, 
nearly 1/3 of the structure of 1f9d contains β-sheet which was 
identified as the high-scoring section of the sequence (data not 
shown), thus 1f9d should be classified as having α+β 
supersecondary structure.  Another protein classified as all α, 1sp3 
(a putative cytochrome C), also has a significant portion of the 
sequence folded into β-sheets (Mowat, et al., 2004).  This protein 
is also the only “all α” false positive that passed the MRS test, 
which was not particularly surprising given that there is a well-
ordered β-sheet in the structure and the residues in many of the 
short helices have an alternating pattern of hydrophobicity.  
Although it is difficult for the current TMBB prediction algorithm 
to distinguish these types of soluble proteins from TMBBs, their 
overall occurrence in a proteobacterial genome is presumably less 
frequent than in the more stringent NRPDB.  This explains the 
much higher positive predictive values (PPV) observed in the 
analysis of the E. coli genome compared to the NRPDB. 

4.5 Low-scoring true positives 
 There were three porin-like TMBBs that scored poorly 
and did not pass the MRS test.  The structures of sucrose porin 
(1a0s), NalP (1uyn) and the LPS-O-deacylase, PagL (2erv), were 
examined to understand why they did not fit the prediction model 
used by the algorithm (Wang, et al., 1997; Oomen, et al., 2004; 
Rutten, et al., 2006).  The reason these protein sequences scored 
worse than the other porins is that the sequences in some of the β-
strands deviate from the dyad repeat pattern expected by the 
prediction model.  In each case there were multiple β-strands with 
hydrophobic side chains facing the interior surface of the pore.  
The significance of this is that two to three consecutive 
hydrophobic residues in a β-strand is inconsistent with the dyad 
repeat pattern of alternating hydrophobicity seen more commonly 
in transmembrane β-strands.  In the prediction model of the 
Freeman-Wimley algorithm, β-strands with deviations from the 
canonical pattern receive lower β-strand scores, which 
subsequently result in reduced local β-hairpin scores and 
consequently, lower β-barrel scores.  The impact this has on a β-
barrel score is significant because any regions of the sequence that 
receive β-hairpin scores less than six do not count toward the β-
barrel score; so if one or two β-strands each have one deviation 

from the dyad repeat pattern, then the β-barrel score could be 
reduced substantially. 
 Another group of TMBBs that includes low-scoring 
members is the multimeric single-pore-formers (i.e., the sequences 
of individual protomers that assemble to form a single 
transmembrane pore such as OprM, TolC, and α-hemolysin; Song, 
et al., 1996; Koronakis, et al., 2000; Akama, et al., 2004).  There 
are three classes of proteins that form multimeric single pores in 
the NRPDB: the multi-drug efflux pumps, the cytolysins, and a 
trimeric autotransporter.  The multi-drug efflux pumps received 
low scores, ranging from 46-69 and they all failed the MRS test.  
The proteins in this class have very little β-sheet content, have 
extensive helical content, which dilutes the β-hairpin density, and 
were, therefore, expected to receive low β-barrel scores.  The 
cytolysins have more β-sheet content than the multi-drug efflux 
pumps and received β-barrel scores ranging from 64 to 183.  
Interestingly, the only part of proteins in this class that actually 
contribute to membrane insertion is a single β-hairpin which 
contributes 15-40 points to the β-barrel score.  Lastly, a monomer 
of the homotrimeric autotransporter, Hia (2gr7; Meng, et al., 
2006), was the only TMBB to receive a β-barrel score of 0.  The 
short sequence (129 residues) is dominated by an α-helix which 
constitutes a third of the sequence.  Although the two β-hairpins 
are not readily discerned by the prediction algorithm, 
concatenating the sequence (i.e., consecutively pasting more than 
one copy of the sequence) allows for the detection of both β-
hairpins in the penultimate copy of the monomeric sequence.  This 
illustrates the need to address the loss of information content at the 
termini of sequences caused by the algorithm.  Together, these 
observations imply that this algorithm is not as useful for the 
prediction of multimeric single barrels as it is for the single-
molecule TMBBs.  This, however, is not especially problematic 
since multimeric single barrels represent a small proportion of 
TMBBs. 

4.6 Comparison to other prediction methods 
 Machine learning methods are a reasonable choice for 
decoding the enigmatic sequences of TMBBs and can produce 
high prediction accuracies.  However, this work shows that a good 
statistical approach with solid hypothesis testing can surpass the 
accuracy of machine learning methods and carries the added 
advantage of advancing the understanding of the underlying 
physical principles that govern TMBB structure.  Furthermore, 
most machine-learning methods do not reveal the specific 
properties of TMBBs used to make their predictions.  Indeed, there 
is little attention given to elucidating the quintessential features of 
a sequence that lead to a certain fold and much less attention given 
to exploring the details that lead to false results. 

4.7 Toward genomic prediction 
 In this study, an algorithm developed to predict 
transmembrane β-barrels (TMBBs) from genomic sequences, first 
developed in this lab, was modified to improve the accuracy of the 
algorithm.  The lab’s original algorithm works well at identifying 
known TMBBs, but has a limited capacity to discriminate against 
non-TMBBs in the NRPDB.  Various weaknesses were improved, 
which led to a dramatic enhancement in overall prediction 
efficiency.  The Freeman-Wimley algorithm distinguishes TMBBs 
from other proteins with very high accuracy in the NRPDB, which 
was a very stringent test case, and outperformed any previously 
published algorithm.  The most important aspect of this prediction 
algorithm is that it is based on an explicit understanding of the 
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physicochemical properties involved in the structure of known 
TMBBs.  With regard to identifying the optimal user-selected 
threshold, it was observed that protein sequences that score less 
than 45 can be accurately classified as non-TMBBs while a 
threshold between 90 and 135 is optimal for achieving the greatest 
sensitivity and highest confidence that positive predictions are true 
TMBBs.  Additionally, a positive result from the MRS test 
combined with a high β-barrel score makes a prediction 
substantially stronger.  All of the evidence presented in this work 
validates the basic principles established in the development of the 
original algorithm and has culminated in a highly refined algorithm 
which is the most accurate TMBB prediction method to date.  
Furthermore, the analysis of the E. coli genome showed that this 
algorithm can satisfactorily perform the task of identifying TMBB-
encoding genes in genomic databases.  The work presented here 
showcases the development of a powerful tool that will be used to 
identify TMBBs from the genomes of Gram-negative bacteria.  
The predictions will be stored in a database which may facilitate a 
much more rapid expansion in the study of this fascinating 
structural class of membrane proteins. 
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